Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1.
نویسندگان
چکیده
A gram-positive strong polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, can degrade PCBs by cometabolism with biphenyl or ethylbenzene. In RHA1, three sets of aromatic-ring-hydroxylating dioxygenase genes are induced by biphenyl. The large and small subunits of their terminal dioxygenase components are encoded by bphA1 and bphA2, etbA1 and etbA2, and ebdA1 and ebdA2, respectively, and the deduced amino acid sequences of etbA1 and etbA2 are identical to those of ebdA1 and ebdA2, respectively. In this study, we examined the involvement of the respective subunit genes in biphenyl/PCB degradation by RHA1. Reverse transcription-PCR and two-dimensional polyacrylamide gel electrophoresis analyses indicated the induction of RNA and protein products of etbA1 and ebdA1 by biphenyl. Single- and double-disruption mutants of etbA1, ebdA1, and bphA1 were constructed by insertional inactivation. The 4-chlorobiphenyl (4-CB) degradation activities of all the mutants were lower than that of RHA1. The results indicated that all of these genes are involved in biphenyl/PCB degradation. Furthermore, we constructed disruption mutants of ebdA3 and bphA3, encoding ferredoxin, and etbA4, encoding ferredoxin reductase components. The 4-CB degradation activities of these mutants were also lower than that of RHA1, suggesting that all of these genes play a role in biphenyl/PCB degradation. The substrate preferences of etbA1A2/ebdA1A2- and bphA1A2-encoded dioxygenases for PCB congeners were examined using the corresponding mutants. The results indicated that these dioxygenase isozymes have different substrate preferences and that the etbA1A2/ebdA1A2-encoded isozyme is more active on highly chlorinated congeners than the bphA1A2-encoded one.
منابع مشابه
Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in A PCB degrader, Rhodococcus sp. strain RHA1.
Rhodococcus sp. RHA1 induces two biphenyl dioxygenases, the BphA and EtbA/EbdA dioxygenases, during growth on biphenyl. Their subunit genes were expressed in R. erythropolis IAM1399 to investigate the involvement of each subunit gene in their activity and their substrate preferences. The recombinant expressing ebdA1A2A3etbA4 and that expressing bphA1A2A3A4 exhibited 4-chlorobiphenyl (4-CB) tran...
متن کاملCloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encod...
متن کاملCharacterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.
Rhodococcus sp. strain RHA1 is a gram-positive polychlorinated biphenyl (PCB) degrader which can degrade 10 ppm of PCB48 (equivalent to Aroclor1248), including tri-, tetra-, and pentachlorobiphenyls, in a few days. We isolated the 7.6-kb EcoRI-BamHI fragment carrying the biphenyl catabolic genes of RHA1 and determined their nucleotide sequence. On the basis of deduced amino acid sequence homolo...
متن کاملCharacterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1.
Transcription of the bphA1A2A3A4C1B genes, which are responsible for the conversion of biphenyl and polychlorinated biphenyl to the meta-cleavage products in Rhodococcus sp. strain RHA1, was examined. The bphA1 promoter (P(bphA1)) was identified and was shown to promote transcription induction by biphenyl and ethylbenzene. An 8.8-kb HindIII fragment that promotes transcription induction of P(bp...
متن کاملCrystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1.
Biphenyl dioxygenase is the enzyme that catalyzes the stereospecific dioxygenation of the aromatic ring. This enzyme has attracted the attention of researchers due to its ability to oxidize polychlorinated biphenyls, which is one of the serious environmental contaminants. We determined the crystal structure of the terminal oxygenase component of the biphenyl dioxygenase (BphA1A2) derived from R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 8 شماره
صفحات -
تاریخ انتشار 2006